Articles acceptés ou publiés dans des revues avec comité de lecture
- A. Rozanova-Pierrat, A. Teplyaev, S. Winter, M. Zaehle Fractal curvatures and short time asymptotics of heat diffusion, accepté à “From Classical Analysis to Analysis on Fractals: a Tribute to Robert Strichartz, Volume 2”. Edited by P. Alonso Ruiz, M. Hinz, K. Okoudjou, L. G. Rogers, A. Teplyaev. Springer.https://hal.science/hal-04927310.
- G. Claret, M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Layer potential operators for transmission problems on extension domains https://hal.science/hal-04505158 accepté sous révision dans Journal de Mathématiques Pures et Appliquées.
- F. Magoulès, M. Menoux, A. Rozanova-Pierrat, Frequency range non-Lipschitz parametric optimization of a noise absorption https://hal.science/hal-04691541 à paraître dans SIAM J. Control Optim.
- G. Claret, A.Rozanova-Pierrat “Existence of optimal shapes for heat diffusions across irregular interfaces” https://hal.archives-ouvertes.fr/hal-04316274 accepté comme un chapitre dans AMS-SMF-EMS Special Session on Fractal Geometry in Pure and Applied Mathematics. Edited by: Hafedh Herichi, Maria Rosaria Lancia, Therese Basa Landry, Anna Rozanova-Pierrat, Steffen Winter; AMS, Contemporary Mathematics (CONM) book series.
- M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Boundary value problems on non-Lipschitz uniform domains: Stability, compactness and the existence of optimal shapes, Asymptotic Analysis, vol. 134, no. 1-2, pp. 25-61, 2023 DOI: 10.3233/ASY-231825
https://arxiv.org/abs/2111.01280 - A. Dekkers, A. Rozanova-Pierrat, Dirichlet boundary valued problems for linear and nonlinear wave
equations on arbitrary and fractal domains, Journal of Mathematical Analysis and Applications, 512 (2022) 126089, https://doi.org/10.1016/j.jmaa.2022.126089
https://authors.elsevier.com/a/1ehCC,WNxmxo8 - A. Dekkers, A. Rozanova-Pierrat, A. Teplyaev, Mixed boundary valued problems for linear and nonlinear
wave equations in domains with fractal boundaries, Calculus of Variations and Partial Differential Equations, (2022) 61:75
https://doi.org/10.1007/s00526-021-02159-3,
https://rdcu.be/cIgI4 - M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Non-Lipschitz uniform domain shape optimization in linear acoustics. SIAM J. Control Optim. Vol. 59, No. 2 (2021), pp. 1007–1032. DOI 10.1137/20M1361687
https://hal.archives-ouvertes.fr/hal-02919526. - M. Hinz, F. Magoulès, A. Rozanova-Pierrat, M. Rynkovskaya, A. Teplyaev, On the existence of optimal shapes in architecture. Applied Mathematical Modelling, Vol. 94, (2021), pp. 676–687. DOI 10.1016/j.apm.2021.01.041
https://authors.elsevier.com/a/1cbQY,703q6p69
https://hal.archives-ouvertes.fr/hal-02956458. - F. Magoulès, P.T.K. Ngyuen, P. Omnes, A. Rozanova-Pierrat, Optimal absorbtion of acoustic waves by a boundary. SIAM J. Control Optim. Vol. 59, No. 1, (2021), pp. 561-583.
https://hal.archives-ouvertes.fr/hal-01558043 - A. Rozanova-Pierrat, Generalization of Rellich-Kondrachov theorem and trace compacteness for fractal boundaries, chapitre du livre “Fractals in engineering: Theoretical aspects and Numerical approximations”, Volume ICIAM 2019 Proceedings.
https://www.springer.com/us/book/9783030618025 - A. Dekkers, A. Rozanova-Pierrat, Models of nonlinear acoustics
viewed as an approximation of the Navier-Stokes and Euler compressible
isentropic systems, Commun. Math. Sci.
Vol. 18, No. 8, (2020), pp. 2075–2119.
https://hal.archives-ouvertes.fr/hal-01935515 - A. Dekkers, V. Khodygo, A. Rozanova-Pierrat, Models of nonlinear
acoustics viewed as approximations of the Kuznetsov equation. DCDS-A, Vol. 40, No. 7, 2020, (28 pages).
https://hal.archives-ouvertes.fr/hal-02134311 - K. Arfi, A. Rozanova-Pierrat, Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems – S, Vol. 12, No. 1, 2019, pp. 1–26
- A. Dekkers, A. Rozanova-Pierrat, Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems – A, Vol. 39, No. 1, 2019, pp. 277–307
- C. Bardos, D. Grebenkov, A. Rozanova-Pierrat, Short-time heat diffusion in compact domains with
discontinuous transmission boundary conditions. Math. Mod. Meth. Appl. Sci., Vol. 26, No. 1, 2016, pp. 59–110
https://www.archives-ouvertes.fr/hal-01186761 - A. Rozanova-Pierrat, Approximation of a compressible Navier-Stokes system by non-linear acoustical models, Proceedings of the International Conference DAYS on DIFFRACTION, 2015 May 25–29, 2015, St. Petersburg, Russia, pp. 270–276
- A. Rozanova-Pierrat, D. S. Grebenkov, and B. Sapoval, Faster diffusion across an irregular boundary. Phys. Rev. Lett., Vol. 108, 2012, pp. 240602.
- H. Ammari, Y. Capdeboscq, F. de Gournay, A. Rozanova-Pierrat, and F. Triki, Microwave imaging by elastic perturbation. SIAM J. Appl. Math. Vol. 71, 2011, pp. 2112–2130.
http://www.math.ens.fr/~ammari/papers/ACGRPT.pdf - A. Rozanova-Pierrat, Perturbative numeric approach in microwave imaging. Applicable Analysis, Vol. 89, No. 12, 2010, pp. 1855 – 1877
- A. Rozanova-Pierrat, On the Controllability for the Khokhlov-Zabolotskaya-Kuznetsov (KZK)-like Equation. Applicable Analysis, Vol. 89, No. 3, 2010, pp. 391–408
- A. Rozanova-Pierrat, On the Derivation and Validation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation for Viscous and Nonviscous Thermo-ellastic Media. Commun. Math. Sci., Vol. 7., No. 3, 2009, pp. 679–718
- A. Rozanova-Pierrat, Qualitative Analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation. Math. Mod. Meth. Appl. Sci., Vol. 18, No. 5, 2008, pp. 781–812
- A. Rozanova, Khokhlov-Zabolotskaya-Kuznetsov Equation. C. R. Acad. Sci. Paris, Ser. I Vol. 344, 2007, pp. 337–342
- C. Bardos, A. Rozanova, KZK Equation. Spectral and Evolution Problems (Proceedings of the Fifteenth Crimean Autumn Mathematical School-Symposium) Vol. 15, 2004, pp. 154–159
- A.V. Rozanova, Controllability for a Nonlinear Abstract Evolution Equation. Mathematical Notes, Vol. 76, No. 4, 2004, pp. 511–524. A.V. Rozanova, Letter to the Editor. Mathematical Notes, Vol. 78, No. 5-6, 2005, p. 745.
- A.V. Rozanova, Controllability in a Nonlinear Parabolic Problem with Integral Overedetermination. Differential Equations, Vol. 40, No. 6, 2004, pp. 853–872
Anna Rozanova-Pierrat - 02/05/2025